HDU 5318 The Goddess Of The Moon(dp、矩阵快速幂)
题意:
$N\le 50,M\le 10^9,N个字符串,选出M个拼接到一起$
$(i, j)拼接的条件是i的后缀和j的前缀的公共长度\ge 2$
$问拼接成不同的字符串的个数,答案对10^9+7取模$
分析:
$N小,并且M是10^9,赤果果的告诉你是矩阵快速幂$
$据说字符串要先去重,这是一个trick$
$f[i][j]:=长度为i,j结尾的方法数,转移矩阵是trans[i][j]:=(i, j)能否拼接$
$ans =\sum_{i=1}^n f[M][i]= f[1][i]\cdot (trans[i][j])^{M-1}$
$时间复杂度为O(n^3logm)$
代码:
//
// Created by TaoSama on 2016-03-22
// Copyright (c) 2016 TaoSama. All rights reserved.
//
#pragma comment(linker, "/STACK:102400000,102400000")
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <set>
#include <vector>
using namespace std;
#define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl
const int N = 50 + 10, INF = 0x3f3f3f3f, MOD = 1e9 + 7;
int n, m;
typedef long long LL;
struct Matrix {
int row, col;
LL mat[N][N];
void init(int r, int c, bool one = false) {
row = r; col = c;
memset(mat, 0, sizeof mat);
if(!one) return;
for(int i = 0; i < row; ++i) mat[i][i] = 1;
}
Matrix operator* (const Matrix& rhs) {
Matrix ret; ret.init(row, rhs.col);
for(int k = 0; k < col; ++k) {
for(int i = 0; i < row; ++i) {
if(mat[i][k] == 0) continue;
for(int j = 0; j < rhs.col; ++j) {
if(rhs.mat[k][j] == 0) continue;
ret.mat[i][j] = (ret.mat[i][j] + mat[i][k] * rhs.mat[k][j]) % MOD;
}
}
}
return ret;
}
Matrix operator^ (LL n) {
Matrix ret, x = *this;
ret.init(row, col, 1);
while(n) {
if(n & 1) ret = ret * x;
x = x * x;
n >>= 1;
}
return ret;
}
} A, ans;
string a[55];
bool check(int x, int y) {
for(int i = 2; i <= a[x].size(); ++i) {
string suffix = a[x].substr(a[x].size() - i);
string prefix = a[y].substr(0, i);
if(suffix == prefix) return true;
}
return false;
}
int main() {
#ifdef LOCAL
freopen("C:\\Users\\TaoSama\\Desktop\\in.txt", "r", stdin);
// freopen("C:\\Users\\TaoSama\\Desktop\\out.txt","w",stdout);
#endif
ios_base::sync_with_stdio(0);
int t; scanf("%d", &t);
while(t--) {
scanf("%d%d", &n, &m);
set<string> s;
for(int i = 0; i < n; ++i) {
char buf[20]; scanf("%s", buf);
s.insert(buf);
}
n = 0;
for(auto &str : s) a[n++] = str;
A.init(n, n);
for(int i = 0; i < n; ++i)
for(int j = 0; j < n; ++j)
A.mat[i][j] = check(i, j);
// prln(check(0, 0));
// for(int i = 0; i < n; ++i){
// for(int j = 0; j < n; ++j)
// printf("(%s, %s): %d\n", a[i].c_str(), a[j].c_str(), A.mat[i][j]);
// }
ans.init(1, n);
for(int i = 0; i < n; ++i) ans.mat[0][i] = 1;
ans = ans * (A ^ m - 1);
int sum = 0;
for(int i = 0; i < n; ++i)
if((sum += ans.mat[0][i]) >= MOD) sum -= MOD;
printf("%d\n", sum);
}
return 0;
}